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(7.5) 

Here ktZJj is the curvature of the cross-sectional contour. Equations (7.5) agree with 

the equations derived in /13/ by another method that applied the principle of additional 
energy directly to the three-dimensional theory of equilibrium of prestressed bodies. 

The domain of applicability of this theory for the buckling of thin-walled rods is 
studied in /14/ in the example of a rod with circular section by making a comparison with the 
exact solution of the stability problem for a hollow circular cylinder in a three-dimensional 
formulation. It is established in /14/ that Eq.(7.5) enables the critical load to be determined 
fairly exactly, corresponding to the rod instability mode occurring in long shells. This 
buckling mode is characterized by the fact that the functions '~a&) have two sign changes 
on the cross-sectional contour. Equations (7.5) are usedin/14/ to calculate the critical 
laod of a rod with a complex cross-sectional profile. 
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THE EXISTENCE OF AN OPTIMAL SOLUTION IN PROBLEMS 
OF DETERMINING THE SHAPE OF AN ELASTIC LINE* 

E.A. NIKOLAEVA and L.V. PETUKHOV 

The existence of an optimal solution in the problem of strain energy 
minimization of maximization for an elastic rod is investigated. It is 
established that for any elastic line shape a unique solution exists in 
Timoshenko's theory for the boundary conditions under consideration, while 
there is a case in Kirchoff's theory for an inextensible rod when the 
solution is not unique. A generalized optimal control exists in the 
optimization problem. The case when a measurable optimal control exists 
is investigated. Examples of the generalized control are presented. 

1. Let two points 0 and rI be fixed in R3. Connected them by an elastic line of given 
length 1, so that the elastic strain energy is extremal. For this problem the load can be 
considered to be both distributed p(r), m(r) ( vectors of the forces and moments), and lumped 

l Prikl.Matem.Mekhan.,49,1,130-135,198s 
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at the ends 0 and 1. We let ei denote the unit vectorsof a fixed 
coordinate system, and rf the unit vectors of a moving coordinate 
system connected to the elastic line fFig.1). Here and henceforth 
everywhere, unless specified otherwise, the subscripts run through 
the values 1, 2, 3. Summation from 1 to 3 is assumed over the 
repeated subscripts in the products. 

We define the rotation tensor components Y by the relation- 

ships yii = eir.r., where the superscript T denotes the operation 
of transposition. The rotation tensor ~=~(I?}, where T@O.t], 
determines the elastic line desired. 

The equations describing the equilibrium of an elastic line 
can be written in the form /l/ (Timoshenko's theory) 

(1.1) 

(1.2) 

The dot denotes the derivative didf; P, W,q?,u are, respectively, the force, moment, angle 
of rotation, and displacement vectors , s is a vector governing the location of the elastic 
line, x is the specific elastic strain energy, eilr; is the Levi-Civita tensor, E is Young’s 

modulus, G is the shear modulus, s is the area, j,.j, are the principal moments bf inertia,, 
il. i? are the principal shear factors, and c is the torsional stiffness of a rod section. 

We shall consider pi (r). mi (r), yiiZ (r) to be measurable functions I' s [0,11, where yih satisfy 
natural constraints 

For simplicity 

The condition 

should be given for 
We consider as 

( Sij is the Kronecker delta) 

yih.J',;, = S,j (1.3) 

we consider five kinds of boundary conditions at the ends of the rod 

u (0) = cp io, = u (1) = #$ (2) = 0 (1.4) 

u (0) = u (I) = q (I) = 0, M (0) = -M, 11.5) 

cp (0) = u (if = T (E) = 0, P (0) = -P, (1.6) 

u (I) = I+ (I) = 0, P (0) = --PO, M (0) = -M, (1.7) 

'p (0) = u (1) = 0, P (0) = A',, M (I) = MM1 (1.8) 

xi (0) = 0, xi (I) = Xii, I? (0) = 0 (1.9) 

(1.2). 
the optimization problem 

inf pll (1) (1.10) 

where p= 1 or g = ---I. We will call the optimization problem (l.ll-(1.31, (1.9), (1.101 
with one of the boundary conditions (1.4)-_(1.8l,problem A. An analogous problem was con- 
sidered in /2/ for the plane case. 

In addition to problem A we shall consider the split problem 13, 4/ 

pi' = -_pi, M,' = -mi - Xk,yj,@)eij~:PI, (1.11) 

c+Yi’ = Zh,A,y,..“‘yji_“‘n~j, Ui’ = Z$ (--eiji;Yj~*)QF: 4” 

B&Yif:“)yjsnPj) 

21’ = r-htyis(Qt II’ = Xa.gn:Q 11.12) 

A, > 0, Zh, = 1, y~,~(~)yj~(~~ = 6,J, t = 0, . . .( 16 11.13) 

Here and henceforth, 2 denotes summation over t from t = 0 to t = 16, &(I') are new 
control functions, vrh.tLJ(r) are split controls, and the expression a(") agrees with n (the. 

right side of the second equation in (1.2)) in which YlP are substituted in place of yis. 

We assume that h!, Tik@ are measurable functions in [O,lj. 
We will call the optimization problem fl.ll)-(1.13) t (1.9f, (1.10) with one Of the 

boundary conditions il..4)--f1.8),problem B. 

2. We will investigate the existence of solutions of the boundary value problems (1.1) 
and (1.11) with one of the boundary conditions (1.4)-(1.8). Equations (1.11) reduce to (1.1) 

when y$"h' S . . . = #‘: consequently we will investigate (1.11). 
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We replace the boundary value problem by its equivalent, the minimization of the additional 

work 

on all the Pi,hfi satisfying the first two equations in (1.11) and the force and moment 
boundary conditions (1.4)-(1.8) as a function of the kind of fixing. 

The solution of the first two equations in (1.11) can be represented in the form (Qr,Ni 
are arbitrary constants) 

Pi = Qi - & (r), .11i = Ni -. eijkSQk - qi (r) (2.2) 
r r 

Ei = 'p& 
s 

lli = 
s 

(i7fi - Xeijky$&) clr 
0 0 

The first differential equation in (1.12) with the first condition in (1.9) was used to 
obtain (2.2). Substituting pi and ~11~ from (2.2) into (2.1), we obtain 

D (1) = I/, ( zht [&Yili%#) (N, - eiJFd?k - (2.3) 

q[) (NJ - eJ#&Q~ - qJ) + &Yik”‘YJk” @i - Et) @J - tJ)> 

Now the minimum of (2.3) should be sought for those vectors Ni,Qi E UC RB,which satisfy 
the equations: 

Qf = --pOi for boundary conditions (1.6)-(1.8); 

Ni = -Mpi for boundary conditions (1.5) and (1.7); 

Nt + eijkrl& -qj (I) = Mli for boundary conditions (1.8). 

The problem is called statically determinate for boundary conditions (1.7) and (1.8) since 
Ni and Qi are determined by the force and moment boundary conditions (the set LJ consists 
of one point). 

We will now analyse II (1). The right side of (2.3) is a quadratic function in N1 and Qi, 
where since n(Z)>O, n(l) is a convex function of Ni and Qi. We extract the quadratic 
component in Ni, Qi from (2.31, and denote it by D"(N, Q). It follows from (1.2) that 

0 < cc I: Ah, 0 < fi $ Bh-. Taking (1.13) into account, we obtain the estimate 

II0 (L’fy Q) -2 ‘lG((Ni - ei,,,x,Q,) (Na - etspx,Qq)) + 'I~~SZQ~Q~ 
and we represent it in the matrix form 

no (N, Q) > ‘1, II NTQT II -De II NTQT IIT (2.4) 

(2.5) 

Theorem 1. Let 1) pi, mi, Y~J”‘, ht be measurable functions in the interval IO, 11 which 
satisfy (1.13); 2) a>O, p>O. Then a unique absolutely continuous solution of (1.11) exists 
with one of the boundary conditions (1.4)-(1.8). 

Proof. We will apply the theorem on minimization of a coercive functional on a convex 
set /5/ to (2.3). For the boundary conditions (1.4)-(1.8) the set U is either a subspace 
or consists of one point. In order for the functional (2.3) to be coercive, it is necessary 
and sufficient that d&D > 0. 

We carry out three elimination steps for the elements D,r,D,,,D,r in d&D by Gauss's 
method. Consequently we obtain 

It follows from 
select e, so that it 

From the Cauchy 

it follows that 

det D = det Ij z,J 11, z,, = akit -i- 201’ - WJWJ 

ZiJ = a&J + WiwJ (i # i) 

(2.5) that II,ZIJlj is a symmetric tensor of the second rank, hence we 
becomes diagonal. Then 
inequality 

det D = Z,,Z,,Z,,. 

<x,>* < Kr?> (2.6) 

Zff s 0$1* + d<zJxJ - zi*> + aa (<xi)z - +J> <zJ>) > 0 (2.7) 
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If these inequalities are satisfied, then detD>O and a unique N,“,QtO exists on which 
a minimum of (2.3) is reached. 

Ml, Pf 
Substituting them into (2.2), we obtain absolutely continuous 

after which we find by substituting MI and Pi into the thrid and fourth equations 
in (1.11) and integrating 

(2.8) 

where ‘POT, Uoi are arbitrary Constants that are found from the kinematic conditions (1.4)- 
(1.8). It is clear that cPi* ui are also absolutely continuous functions. The theorem is 
proved. 

Corollary 1. Let condition 1 of Theorem 1 be satisfied, a>O, Bk = 0, and let the 
elastic line not lie on a straight line. Then a unique absolutely continuous solution of 
the boundary value problem under consideration exists. 

Proof. We must show that datD>O. The remaining discussion remains unchanged. Indeed, 
inequality (2.6) becomes an equality only when .zi = const, and by virtue of (1.9) this is 
impossible if *i sz 0. It follows from (2.7) that the right side of (2.7) can vanish for a 
certain subscript i if two components of the vector x are identically zero, for instance, 
21 = 22 E 0 (here the tensor HZijilhas diagonal form). But for 21= ~,sO,the rod lies on a 
straight line, which contradicts condition 2, therefore, det D > 0. 

Corollary 2. Let condition 1 of Theorem 1 be satisfied, a> 8, & = 0 and let the 
elastic line be straight. Then an absolutely continuous solution of the boundary value 
problem exits for the boundary conditions under consideration which is unique for boundary 
conditions (1.6)-(1.8), and not unique for boundary conditions (1.4) and (1.5)._ 

Proof. If we select r3=*+? it can be seen that D (2) (2.3) is independent of Q3. 
In this case 

w1 = w2 _ z% = zij = 0 (i# 1). u-,=a~r,dr. z,,=i*2=a~.,w 

0 0 

and (2.4) becomes the inequality Do (W> Q) Zl!z(/ NTQ,Q,(I ,D", (/ X'Q,Qsljr. 
It can be seen by a direct calculation that 

det Do = al (1 1~2 - :z3P)2 

Since +*O, then d&D"> o and therefore, unique Ni', Ql", Q1" exist which impart a minimum 

to n (1) (2.3). The constant Qs" for boundary conditions (1.4) and (1.5) can be selected 
arbitrarily. The subsequent discussion remains the same as in Theorem 1. 

3. We now consider the question of the existence of a solution for the optimal problem 
A and B. 

For problem A we introduce the set 

8 = {y 5 R” 1 yi = -_Pi, ~a+i = -mi - eijhyj.d’,, (3.1) 

ys+i = AI;YihYjhMj. ye-i = -eijkYjsVk + BRYihYjFPj’ 

ylyi = Yisv y16 = n, YikVj.: = sij} 

The sufficient conditions for a measurable optimal control in the problem A to exist are 
related to the convexity of the set Q /6/. The set g is not convex since even the set of 
controls is not convex. For problem B the set analogous to (3.1) agrees with the convex 
hull 61 (co a). In this connection, the existence of a solution can be shown only for 

problem B. 

Theorem 2. Let pi,mi be continuous functions in the interval [&I], then a measurable 

optimal control &,o (l'), y,i(OO (r), t = 0, . . ., 16 exists in problem 8. 

Proof. Since Ah < Cl, Bk < Cl, we obtain the estimates 

IPiI< Ctr 1 Mi I < Cz, I ‘pi I < Ctr i ZJ i I Q Cw 11 (1) < CI (3.2) 

from Theorem 1, Corollaries 1 and 2 (for boundary conditions (1.4) and (1.5) Qa” can be set 
equal to zero) and relationships (2.2) and (2.8), where the constants C, are independent of 

the controls h,, ytk(O, t = 0, ,,.., 16. Therefore, the set co Sz is convex, bounded, andcontinuous 

for any r E LO, 11. The conditions for the theorem on the existence of a measurable optimal 
control /6/ are satisfied, and therefore the theorem is indeed valid. 
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The optimal control &", Yik(*)'* t = 0, . . ., 16 is called a generalized optimal control (sliding 

mode). When Y,,,(O)' = . . . = Yih.('s)O, the generalized optimal control is the ordinary optimal 

control. 
For problem A the Hamiltonian reduces to the form 

H(Y) = p @lPl + qlml) + px -t w&Jk(PJ& + mr (3.3) 

where pi are constant Lagrange multipliers. For problem B the Hamiltonian is 

p (n, Y) = Eli-,H (y"') (3.4) 

where the Hamiltonian H (YC") is defined by expression (3.3), in which y(*) is substituted 
in palce of Y, Pontryagin's maximum principle for problem B is to seek A", Y(')O for which 

H"(h", y")= aup H"@l Y) 
U) (0 h+Os h.+...+h,,~l.Y*kYjL~~j 

from which, taking into account h,> ~J,we obtain 

H (y(O0) = SUP H (~“‘1 (3.5) 

y$yjt$=bi, 

It follows from (3.5) that if the value of yw is unique for all O<r,<Z (with the 
exception, perhaps, of a finite number of points r,,) then the generalized optimal control 
is the ordinary control. 

4. Let us examine the Kirchhoff inextensible rod. In this case Bk= 0. We use the 
notation R,= pi+ pcijkejRk. To analyse condition (3.5), we take an arbitrary point P E [O, 11. We 
combine e, with M or -M,andplace R in the e, ,e, plane so that R,>o, R,>O (Fig.2). 
Then 

H = '/+MiMiAjY$ + Riyi, (4.1) 

It is clear that the unit vector rs should lie in the e2, ea plane between the vectors 

% and e,. Indeed, if this were not so, then by rotating the trihedron I, about e, and 
placing rs between eI and e8 we will obtain a larger value of H than prior to the rotation. 

We introduce the vector e (Fig.21 and use the notation 

r3.e3 = eos8.e.17, = sin 8, rl.e = cos x, r,.e = sin x 

We then obtain from (4.1) 

X = '/*pMiM, (A, cm* x sin2 8 + A2 sin* r. sin* 6 + (4.2) 
A, ~0~ e + R, sin e + Rs COS 81, 0 B e < ni2, 0 c r d n/2 

We will seek the maximum of the function H as a function of r and 8. It follows from the 
condition aHiaX= o that a maximum of H is always reached at the point x=0 or X= ~12. 
Substituting these values into (4.21, we find 

Fig.2 Fig. 3 

Fig.4 



loo 

(4.3) 

From (1.2) it follOWS that if E&226, then A,>&A,)A,. 
Calculatingthe derivatives aHI@, FEJ6tWs we conclude that a maximum of x is always 

reached at one point for all cases except a) fl=i,R,=O b) P= --1,R,=O. Therefore, the 
solutions of the split and initial problems agree if there are no sections on the optimal 
rod on which conditions a) or b) are satisfied. For case a) an entire cone of values of T$ 
exists on which H reaches a maximum (Fig.3a). For case b) two values of the vector rs exist 
on which H reaches a maximum (Fig.3b). 

Example. Let us consider the case when Bk=oIPi= mi=~ and boundary conditions (1.71 
for P,=o. 

The optimal rod has the form 1 (Fig.4a) in the minimization problem B(r). Besides this 
solution, there is also a generalized solution 2 (Fig.4a). In addition to solutions with 
breaks, a smooth optimal solution can also be constructed. Condition a is realized for these 
optimal solutions. 

The optimal rod has the form 1 (Fig.4b) for the maximization problem B(Z). In addition 
to this solution, there is also the generalized solution 2 (Fig.Qbf. Condition b is realized 
for these optimal solutions. 
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ON SY~~TRIC.~D EON-S~~~TRIC CONTACT PROBLEblS 
OF THE THEORY OF ELASTICITY* 

V.M. ALEKSANDROV and B.I. SMETANIN 

Contact problems of the theory of elasticity can be subdivided into two 
major classes: symmetric contact problems for which the kernel of integral 
equations of the convolution type are even or odd functions, and non- 
symmetric contact problems for which the kernels are given by the sum of 
odd and even functions, Certain problems from this latter class were 
apparently examined first in /l-3/. In this paper a general approach 
to their study is given and an approximate solution is constructed: the 
results are demonstrated in two new problems. 

1. As is well-known /4-6/, may plane and axisymmetric contact problems of the theory 
of elasticity reduce to determining the contact forces from an integral equation of the first 
kind with a different kernel of the form 

11.2) 


